Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5
نویسندگان
چکیده
BACKGROUND AND PURPOSE Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. EXPERIMENTAL APPROACH The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. KEY RESULTS Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. CONCLUSIONS AND IMPLICATIONS Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process.
منابع مشابه
Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملReplacement of Serine363 and Serine375 Codons by Alanine in Rat μ-Opioid Receptor cDNA
The aim of this study was to use site directed mutagenesis technique to construct a vector in which serine363 and serine375 residues of the COOH-terminal portion of the μ-opioid receptor (MOR) were substituted by alanine. These constructs are essential in studying G-protein coupled receptor kinase-mediated MOR desensiti-zation. The nested PCR carried out for conversio...
متن کاملSustained ligand-activated preconditioning via δ-opioid receptors.
We have previously described novel cardioprotection in response to sustained morphine exposure, efficacious in young to aged myocardium and mechanistically distinct from conventional opioid or preconditioning (PC) responses. We further investigate opioid-dependent sustained ligand-activated preconditioning (SLP), assessing duration of protection, opioid receptor involvement, additivity with con...
متن کاملXylazine induced central antinociception mediated by endogenous opioids and μ-opioid receptor, but not δ-or κ-opioid receptors
Endogenous opioids have been implicated in compound-induced antinociception, and our group previously suggested that xylazine induces peripheral antinociception by releasing endogenous opioids that act on their respective receptors. In this study, we investigated the involvement of endogenous opioids in α2-adrenoceptor agonist xylazine-induced central antinociception. The nociceptive threshold ...
متن کاملMechanisms underlying δ- and μ-opioid receptor agonist-induced increases in extracellular dopamine level in the nucleus accumbens of freely moving rats.
The nucleus accumbens is a terminal area of the mesolimbic dopaminergic system that arises in the ventral tegmental area. Opioids are thought to enhance dopaminergic activity in the nucleus accumbens by activating δ- and μ-opioid receptors in the ventral tegmental area. However, δ- and μ-opioid receptor agonists increase extracellular levels of accumbal dopamine when infused directly into the n...
متن کامل